02 機能性翻訳途上鎖の生理機能と分子機構

内藤 哲

【研究分担者】北海道大学大学院農学研究院・特任教授

研究室HP

<真核生物からのアプローチ>
細胞内環境などに応答してプログラムされた翻訳アレストを引き起こす機能性翻訳途上鎖は,近年,真核生物においても報告が増えつつある。機能性翻訳途上鎖は,リボソームの出口トンネル,中でも出口トンネル内にリボソームタンパク質のuL4とuL22が突き出た「狭窄部位」と相互作用することで,翻訳アレストを引き起こすと考えられている。
これまでの研究で,シロイヌナズナのuL4が出口トンネルに突き出たβ-ループの頂点近くに位置するArg-77のアラニン置換(R77A),もしくは,これを挟むThr-75とVal-79の欠失(ΔTV)を導入した変異型リボソームを持つ株を作出している。これら変異株から調製した試験管内翻訳系を用いた解析により,真核生物で報告されている機能性翻訳途上鎖への効果を調べた結果,変異の影響はそれぞれに異なっており,uL4との相互作用の違いを示すと考えられる(図; 論文1)。本研究では,uL22への変異導入やuL4の他の部位への変異導入に挑戦するとともに,真核生物が持つ他の機能性翻訳途上鎖の解析へと展開し,機能性翻訳途上鎖とリボソーム出口トンネルの相互作用を明らかにしたい。

  1. Takamatsu, S., Ohashi, Y., Onoue, N., Tajima, Y., Imamichi, T., Yonezawa, S., Morimoto, K., Onouchi, H., Yamashita, Y. and Naito, S. (2020) Reverse genetics-based biochemical studies of the ribosomal exit tunnel constriction region in eukaryotic ribosome stalling: spatial allocation of the regulatory nascent peptide at the constriction. Nucleic Acids Res. 48: 1985-1999.
  2. Hayashi, N., Sasaki, S., Takahashi, H., Yamashita, Y., Naito, S. and Onouchi, H. (2017) Identification of Arabidopsis thaliana upstream open reading frames encoding peptide sequences that cause ribosomal arrest. Nucleic Acids Res. 45: 8844–8858.
  3. Yamashita, Y., Takamatsu, S., Glasbrenner, M., Becker, T., Naito, S. and Beckmann, R. (2017) Sucrose sensing through nascent peptide-meditated ribosome stalling at the stop codon of Arabidopsis bZIP11 uORF2. FEBS Lett. 591: 1266–1277.
  4. Hagiwara-Komoda, Y., Choi, S.H., Sato, M., Atsumi, G., Abe, J., Fukuda, J., Honjo, M.N., Nagano, A.J., Komoda, K., Nakahara, K.S., Uyeda, I. and Naito, S. (2016) Truncated yet functional viral protein produced via RNA polymerase slippage implies underestimated coding capacity of RNA viruses. Sci. Rep. 6: 21411.
  5. Ebina, I., Takemoto-Tsutsumi, M., Watanabe, S., Koyama, H., Endo, Y., Kimata, K., Igarashi, T., Murakami, K., Kudo, R., Ohsumi, A., Noh, A.L., Takahashi, H., Naito, S. and Onouchi, H. (2015) Identification of novel Arabidopsis thaliana upstream open reading frames that control expression of the main coding sequences in a peptide sequence-dependent manner. Nucleic Acids Res. 43: 1562–1576.
  6. Hagiwara-Komoda, Y., Sugiyama, T., Yamashita, Y., Onouchi, H. and Naito, S. (2014) The N-terminal cleavable pre-sequence encoded in the first exon of cystathionine -synthase contains two different functional domains for chloroplast targeting and regulation of gene expression. Plant Cell Physiol. 55: 1779–1792.
  7. Yamashita, Y., Kadokura, Y., Sotta, N., Fujiwara, T., Takigawa, I., Satake, A., Onouchi, H. and Naito, S. (2014) Ribosomes in a stacked array: Elucidation of the step in translation elongation at which they are stalled during S-adenosyl-L-methionine-induced translation arrest of CGS1 mRNA. J. Biol. Chem. 289: 12693–12704.
  8. Murota, K., Hagiwara-Komoda, Y., Komoda, K., Onouchi, H., Ishikawa, M. and Naito, S. (2011) Arabidopsis cell-free extract, ACE, a new in vitro translation system derived from Arabidopsis callus cultures. Plant Cell Physiol. 52: 1443–1453.
  9. Onoue, N., Yamashita, Y., Nagao, N., Goto, D.B., Onouchi, H. and Naito, S. (2011) S-Adenosyl-L-methionine induces compaction of nascent peptide chain inside the ribosomal exit tunnel upon translation arrest in the Arabidopsis CGS1 gene. J. Biol. Chem. 286: 14903–14912.
  10. Onouchi, H., Nagami, Y., Haraguchi, Y., Nakamoto, M., Nishimura, Y., Sakurai, R., Nagao, N., Kawasaki, D., Kadokura, Y. and Naito, S. (2005) Nascent peptide-mediated translation elongation arrest coupled with mRNA degradation in the CGS1 gene of Arabidopsis. Genes Dev. 19: 1799–1810.